COUPLED CLUSTER STUDY OF SPECTROSCOPIC CONSTANTS OF THE ALKALI METAL DIATOMICS: GROUND AND THE SIN-GLET EXCITED STATES OF Na₂, NaLi, NaK, and NaRb

Pavel NEOGRÁDY
a¹, Péter G. SZALAY^b, Wolfgang P. KRAEMER^c and Miroslav Urban
a²

- ^aDepartment of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, SK-84215 Slovakia; e-mail: ¹palo@fns.uniba.sk, ²urban@fns.uniba.sk
- ^bLoránd Eötvös University, Department of Theoretical Chemistry, Budapest, H-1518 Hungary; e-mail: szalay@para.chem.elte.hu
- ^cMax Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, Garching, POB 1523, D-85741 Germany; e-mail: wpk@MPA-Garching.MPG.DE

A newly implemented two-determinant coupled cluster method including single and double excitation operators (TD-CCSD) is applied to calculations of spectroscopic constants of alkali metal diatomics. Method is based on Hilbert space approach of Jeziorski and Monkhorst [1], exploining *C*-conditions [2, 3, 1] for incomplete model space. Implementation represents a continuation of previous works [4, 5].

The equilibrium bond length, harmonic vibrational frequency, anharmonicity, the dissociation energy and excitation energies are derived from the potential curves calculated for the ground state $X^{1}\Sigma_{g}^{+}$ and the two singlet mono-excited states, $A^{1}\Sigma_{u}^{+}$ and $B^{1}\Pi_{u}$ of Na₂ as well as for the ground $X^{1}\Sigma^{+}$ and the singlet excited $A^{1}\Sigma^{+}$ and $B^{1}\Pi$ states of the heteronuclear NaLi, NaK, and NaRb molecules. For example, for Na₂ we obtain $R_{e} = 3.677$ Å, 3.424 Å and $\omega_{e} =$ 115.0 cm⁻¹, 125.5 cm⁻¹ for A and B states, respectively (exp.: $R_{e} = 3.638$, 3.423 Å, $\omega_{e} = 117.3$, 124.4 cm⁻¹). Spectroscopic constants and excitation energies agree reasonably well with experiment. Our results demonstrate that the relatively simple CCSD method for the excited states represented by tworeference determinants is a viable technique. The computer time needed for an excited singlet state is practically identical to the time which a standard single-determinant-based CCSD calculation takes.

References

- [1] Jeziorski B., Monkhorst H.: Phys. Rev. A 1981, 24, 1668.
- [2] Li X., Paldus J.: J. Chem. Phys. 2003, 119, 5320.
- [3] Pittner J., Li X., Paldus J., Mol. Phys. 2005, in press.
- [4] Balková A., Bartlett R. J.: Chem. Phys. Lett. 1992, 193, 364.
- [5] Szalay P., Bartlett R. J.: J. Chem. Phys., 1994, 101, 4936.