Nonlinear Optical Properties of Chiral Liquids – Computational Methods and Applications

Benoît CHAMPAGNE

Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles, 61, B-5000 Namur, Belgium, <u>benoit.champagne@fundp.ac.be</u>

In isotropic media, within the electric dipole approximation, three-wave mixing (TWM) in second-order nonlinear optical (NLO) processes is only symmetry-allowed for sum- and difference-frequency generations when the constituents are chiral and present an enantiomeric excess [1]. The TWM in chiral liquids is related to the completely antisymmetric isotropic component of the first hyperpolarizability (β) tensor, the pseudoscalar $\beta = (\beta_{xyz} - \beta_{xzy} + \beta_{zxy} - \beta_{zyx} + \beta_{yzx} - \beta_{zyx})/6$ quantity. $\overline{\beta}(-\omega_{\sigma};\omega_{1},\omega_{2})$ with $\omega_{\sigma} = \omega_{1} + \omega_{2}$ is zero for second harmonic generation ($\omega_{1} = \omega_{2}$), for dc-Pockels effect (ω_{1} or $\omega_{2} = 0$). Although in off-resonance conditions, the chirality-allowed sum-frequency generation (SFG) phenomenon is generally weak [2], SFG signals were observed in resonance conditions [3].

Although $\overline{\beta}$ changes sign with the handedness, SFG can however not distinguish between enantiomers because the scattering power is proportional to the square of the polarization, and therefore to the square of $\overline{\beta}$. On the other hand, using symmetry arguments, it was demonstrated that the third-order electric field-induced SFG signal, $\gamma(-\omega_{\sigma};\omega_1,\omega_2,0)$, originating from the application of an electrostatic field, E(0), gives rise, in chiral liquids, to an interference term, which is linear in the static electric field as well as in $\overline{\beta}$ [5], SFG(E) $\propto \text{Re}[\beta(\overline{\gamma}_i)]E(0)I(\omega_1)I(\omega_2)$, where I are the respective incident intensities, Re stands for the real part, and the star indicates a complex conjugate. The $\overline{\gamma}_i$ (*i* = 1 - 3) quantities are scalar combinations of second hyperpolarizability tensor components, which depend on the light polarizations. Since the $\overline{\gamma}$ quantities are achiral, the contribution to the intensity that is linear in E may therefore reveal the sign of $\overline{\beta}$ and furthermore, be used to determine the absolute configuration of the chiral molecules.

This contribution will describe computational schemes to evaluate electric dipole-based NLO properties of chiral molecules in isotropic media ($\overline{\beta}$ and $\overline{\gamma}_i$). Then, it will discuss applications towards the design of compounds presenting large and specific chirality-based NLO responses [5].

- [1] J.A. Giordmaine, Phys. Rev. **138**, A1559 (1965).
- [2] P. Fischer, D.S. Wiersma, R. Righini, B. Champagne, and A.D. Buckingham, Phys. Rev. Lett. **85**, 4253 (2000).
- [3] P. Fischer, F.W. Wise, and A.C. Albrecht, J. Phys. Chem. A 107, 8232 (2003).
- [4] A.D. Buckingham and P. Fischer, in *Physical Chemistry of Chirality*, edited by J.M. Hicks (Oxford University Press, Oxford, 2002), p. 119.
- [5] E. Botek, B. Champagne, M. Turki, and J.M. André, J. Chem. Phys. 120, 2042 (2004).